The Centrifugal Visual System of a Palaeognathous Bird, the Chilean Tinamou (*Nothoprocta perdicaria*)

Authors' names:
Quirin Krabichler¹, Tomas Vega-Zuniga¹, Denisse Carrasco², Maximo Fernandez², Cristián Gutiérrez-Ibáñez¹, Gonzalo Marín²,³,†, Harald Luksch¹,†

Institutional affiliations:
¹ Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
² Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
³ Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile

† GM and HL are co-senior authors.

Abbreviated title: The Centrifugal Visual System of a Palaeognathous Bird

Keywords: isthmo-optic nucleus; ectopic centrifugal neurons; retinopetal; divergent terminals; optic tectum; tecto-isthmal; association amacrines cells; tyramide signal amplification; RRID:AB_10013220; RRID:AB_2315144; RRID:AB_477329; RRID:AB_2336126; RRID:AB_2534088

Corresponding author:
Quirin Krabichler
Lehrstuhl für Zoologie
Technische Universität München
Liesel-Beckmann Strasse 4, 85354 Freising-Weihenstephan, Germany
E-mail: quirin.krabichler@tum.de

Grant Information: This work was supported by a Bernstein Center for Computational Neuroscience Munich (BCCN) grant to HL (FKZ01GQ1004B), and by a FONDECYT grant to GM (#1151432).

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/cne.24195

© 2017 Wiley Periodicals, Inc.
Received: Dec 18, 2016; Revised: Feb 08, 2017; Accepted: Feb 09, 2017
This article is protected by copyright. All rights reserved.
Abstract

The avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmooptic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmooptic complex (IOC). In order to better understand how this IOC-based centrifugal visual system is organized, we have studied its major components by means of in vivo and in vitro tracing experiments. Our results show that the IOC, though structurally less organized than an ION, possesses a dense core region consisting of multipolar neurons. It receives afferents from neurons in L10a of the optic tectum, which are distributed with a wider inter-neuronal spacing than in Neognathae. The tecto-IOC terminals are delicate and divergent, unlike the prominent convergent tecto-ION terminals in Neognathae. The centrifugal IOC terminals in the retina are exclusively divergent, resembling the terminals from ‘ectopic’ centrifugal neurons in Neognathae. We conclude that the Tinamou’s IOC participates in a comparable general IOC-retina-TeO-IOC circuitry as the neognathous ION. However, the connections between the components are structurally different and their divergent character suggests a lower spatial resolution. Our findings call for further comparative studies in a broad range of species for advancing our understanding of the evolution, plasticity and functional roles of the avian centrifugal visual system.
Introduction

The visual system is generally thought of in terms of feed-forward pathways from the retina to the brain. However, after Santiago Ramón y Cajal first demonstrated terminal endings in the retina of birds (Ramón y Cajal, 1889), a brain-to-retina feed-back projection called centrifugal visual system has been found in all major vertebrate taxa. While the neuroanatomical location of the centrifugal visual neurons can be surprisingly diverse among different vertebrates (reviewed in Repérant et al., 1989, 2006, 2007), in non-mammalian amniotes these cells are found in the isthmus, the junction between mid- and hindbrain (Repérant et al., 2006).

The centrifugal visual system of neognathous birds (Fig. 1 A) generally contains the largest number of such cells and has therefore received much attention (Repérant et al., 1989; Uchiyama, 1989; Wilson and Lindstrom, 2011). Most of their centrifugal visual neurons constitute the isthmo-optic nucleus (ION; Cowan et al., 1961), which is conspicuously organized as a convoluted lamina of cells around a central dendritic neuropil (McGill et al., 1966a, 1966b). The main afferents to the ION originate from a distinct population of tecto-isthmo-optic (tecto-ION) neurons in L9-10 of the ipsilateral TeO, which project topographically upon the ION (Holden, 1968), and have been described in detail in the chicken Gallus gallus (Woodson et al., 1991), the quail Coturnix japonica (Uchiyama et al., 1996; Uchiyama and Watanabe, 1985) and the pigeon Columbia livia (Miceli et al., 1997, 1993; Woodson et al., 1991). In addition to the proper ION, a smaller number of morphologically different 'ectopic centrifugal neurons' lie in surrounding areas (Clarke and Cowan, 1975). Barely any data exist on their afferents (Repérant et al., 2006), though they might also receive tectal projections (O’Leary and Cowan, 1982; Woodson et al., 1991). The axons of both ION and ectopic centrifugal neurons project to the retina where they terminate at the border of the inner plexiform layer (IPL) and the inner nuclear layer (INL) (Chmielewski et al., 1988; Dogiel, 1895; Hayes and Holden, 1983). The axons of the ION neurons form ‘convergent’ terminals (Fritzsch et al., 1990; Uchiyama and Ito, 1993), which are dense pericellular nests on ‘association amacrine cells’ (AACs) in the INL (Fischer and Stell, 1999; Lindstrom et al., 2009; Nickla et al., 1994; Ramón y Cajal, 1911, 1893; Uchiyama and Ito, 1993; Uchiyama and Stell, 2005). The AACs have axons and project to other parts of the retina (Catsicas et al., 1987a; Lindstrom et al., 2010; Uchiyama et al., 2004; Uchiyama and Barlow, 1994). Axons from ectopic
centrifugal neurons, however, form ‘divergent’ terminals, which broadly ramify in the IPL (Fritzsch et al., 1990; Woodson et al., 1995). Little is known about their postsynaptic targets, though it has been reported that they might contact displaced ganglion cells (Dogiel, 1895; Maturana and Frenk, 1965; Hayes and Holden, 1983; Nickla et al., 1994) and “flat” amacrine cells (Dogiel, 1895; Maturana and Frenk, 1965).

In contrast to Neognathae, birds of the order Palaeognathae which comprises Struthioniformes (ostriches), Rheiformes (rheas), Tinamiformes (tinamous), Apterygiformes (kiwis), and Casuariiformes (cassowary and emu; Prum et al., 2015), seem to lack a proper ION (Craigie, 1930; Gutiérrez-Ibáñez et al., 2012; Verhaart, 1971). Nonetheless, as we previously demonstrated by neural tracing in the Chilean Tinamou (Nothoprocta perdicaria), they do possess a high number of centrifugal visual neurons, which form a loosely congregated complex in the same isthmic region where an ION would be expected (Krabichler et al., 2015). This different organization may implicate structural and functional differences of the centrifugal visual system of Palaeognathae compared with Neognathae; however, the circuitry of palaeognathous centrifugal visual system in the brain and retina is still completely unknown (Fig. 1 B). Since Palaeognathae diverged from their sister clade Neognathae approximately 100 million years ago (see Fig. 2; Brusatte et al., 2015; Claramunt and Cracraft, 2015; Jarvis et al., 2014), the comparative study of their differently organized centrifugal visual system may provide important insights into the evolution and behavioral significance of the avian centrifugal visual system, questions which continue to be unresolved in spite of many hypotheses put forward (e.g. Marín et al., 1990; Wilson and Lindstrom, 2011; Gutiérrez-Ibáñez et al., 2012; Uchiyama et al., 2012; Dillingham et al., 2013, 2016).

In the present study we have combined in vivo and in vitro pathway tracing in the Chilean Tinamou, in order to reveal the principal elements and connectivity of the centrifugal visual system of a palaeognathous bird. We examine the morphology and neuroanatomy of the centrifugal neurons, their afferents from the TeO, the tecto-isthmo-optic neurons in the TeO, and the centrifugal terminals in the retina. We then compare these results with the well-studied neognathous centrifugal visual system and discuss possible implications for understanding the evolution and function of the avian centrifugal visual system.
Materials and Methods

Twenty-three adult Chilean Tinamous (*Notoprocta perdicaria*) of both sexes (weight 398 ± 23 g [mean ± SD]), obtained from a Chilean breeder (Tinamou Chile, Los Ángeles, Chile), were used in this study. The animals were kept in the animals facilities of the Department of Biology at the Universidad de Chile, with food and water *ad libitum*. All efforts were made to minimize animal suffering, and the experiments were conducted in compliance with the guidelines of the NIH on the use of animals in experimental research, as well as with the approval of the bioethics committee of the Faculty of Sciences of the Universidad de Chile. For *in vivo* experiments, general anesthesia was induced by IM injection of a mixture of 40 mg/kg Ketamine (Ketamil, Troy Laboratories Pty Ltd, Glendenning, Australia; maximum total dose 120 mg/kg) and 2.5 mg/kg Xylazine (Xylavet, Alfasan International BV, Woerden, Holland; maximum total dose 7.5 mg/kg) and the bird was placed in a stereotaxic device immobilizing its head with ear bars and a beak holder. Body temperature was monitored via a cloaca thermometer and stabilized at 39–40 °C by a heating pad connected to a feedback temperature control unit (Frederick Haer and Co., Brunswick, Maine, USA). Deep anesthesia during the experiments was maintained by 1–2% vaporized isoflurane delivered via a custom-built face mask at a constant flow of 200 ml/min oxygen, using a semi-open non-rebreathing Jackson-Rees circuit coupled to a gas anesthesia system (Matrx VIP 3000, Midmark, Dayton, OH).

In vivo tracer injections

Three birds received intraocular injections of Cholera Toxin B subunit (CTB; #104, List Biological Laboratories Inc., Campbell, CA, USA). The skin covering the dorsal-most sclera of the closed eye was disinfected with 70% ethanol and diluted iodine. A Hamilton syringe (Reno, NV) with a sterile 30G cannula and loaded with 1% CTB in 0.1M phosphate buffered saline pH 7.4 (PBS; 0.75% NaCl) and 2% dimethyl sulfoxide (DMSO) was positioned using a micromanipulator. Skin and sclera were punctured and the further path of the cannula into the eye was ophthalmoscopically monitored. 15 µl CTB were injected into the eye's vitreous body near the retina. After 10 min, the syringe was slowly retracted.
For the experiments with intracerebral injections of neuronal tracers, each bird first received an intraocular injection of 20 µl Rhodamine B isothiocyanate (RITC; Sigma-Aldrich Chemie GmbH, Steinheim, Germany; 10% in PB with 2% DMSO) into the eye contralateral to the experiment, analogous to the CTB injections, in order to retrogradely label the centrifugal visual neurons. Then, the head plumage was trimmed where necessary and the scalp was disinfected with 70% ethanol and diluted iodine. After exposing the skull by a longitudinal incision, craniotomy was performed to open a window overlying either the right TeO or the right telencephalic hemisphere. In the first set of experiments (n = 4), tracer was injected into the TeO. After exposing the tectal dura, a micropipette containing the neuronal tracer solution was positioned perpendicular to the surface of the accessible TeO and inserted to depths between 600-800 µm. Either *Phaseolus vulgaris* leucoagglutinin (PHAL; Vector Laboratories Inc., Burlingame, CA, USA; 2.5% in PBS) or biotinylated dextran amine of 3 kDa (BDA, Thermo Fisher Scientific, Waltham, MA, USA; 10% in 0.1M phosphate buffer pH 7.4 [PB]) served as tracers. The PHAL injections were performed with an air-pressure system (Picospritzer II, General Valve, Fairfield, NJ) combined with iontophoresis (5 µA, 7s on/off pulse series, 10 min) using a Midgard Precision Current Source (Stoelting Co., Wood Dale, IL, USA). BDA was injected at volumes between 115-230 nl with a Nanoliter 2000 injector (World Precision Instruments, USA).

Another set of experiments (n = 12) aimed at injecting into the Tinamou’s isthmo-optic complex (IOC). The heads of the birds were immobilized at a custom angle, in which the ear bars were in horizontal alignment with the beak commissure. In order to avoid cerebellar blood vessels, the IOC region was approached via the telencephalon, while the interhemispheric superior sagittal sinus (mid-line) served as orientation reference in the mediolateral dimension, and the transverse sinus of the cerebro-cerebellar fissure in the anteroposterior dimension. After determining depth landmarks (such as the ventrocaudal telencephalic dura) by electrophysiological recordings with tungsten electrodes, a glass micropipette (tip diameter 30 µm) filled with CTB (1% in 0.1M PBS) was lowered to the stereotaxic coordinates of the IOC. Injections were performed with the Picospritzer combined with iontophoresis analogous to PHAL (see above). About 10 min after the injection in both sets of intracerebral experiments, the micropipette was slowly retracted, the craniotomy window was closed with the skull fragment and bone wax, and the skin wound was sutured.

After every experiment, sterile saline with an analgesic (Ketoprofen; Koralen 10%, Centrovet, Chile; 3 mg/kg) was administered SC and the animals were allowed to recover. After 5 – 10 days of survival, the birds were euthanized with an overdose of Ketamine/Xylazine IV and perfused through the arteriae carotides with 600 ml of...
warm saline followed by 300 ml of cold 4% Paraformaldehyde (PFA) in PB. During the final minutes of the saline perfusion (before switching to PFA), the eyes were enucleated, hemisected at the ora serrata, freed from the vitreous body and fixed for 30 min in 4% PFA/PB. After PFA perfusion, the brain was dissected from the skull and post-fixed in 4% PFA/PB overnight. Tissue was stored in PB containing 0.025% sodium azide. Brains and retinas were embedded in Gelatin (12% gelatin type A, 10% sucrose in H2O at 37 °C) and post-fixed in 4% PFA/PB for 2 h. After equilibration in a 30% sucrose/PB solution, tissue was cryosectioned on a sliding microtome at 45-60 µm.

Retinal in vitro tracings

Four birds were euthanized by an overdose of Ketamine/Xylazine, their eyes immediately enucleated and hemisected, and the eye cups with the retinas (after removal of the vitreous with forceps) maintained in oxygenated (95% O2 / 5% CO2) Ames’ Medium supplemented with 1.9 g/L sodium bicarbonate (AM; Sigma-Aldrich Chemie GmbH, Steinheim, Germany), at room temperature (RT). A Vaseline ring was formed around the severed optic nerve. After performing a fresh cut of the optic nerve stump, a drop of distilled water was applied on the stump for 5 min. Then, the water was removed and 2 µl of a solution of 10% Dextran, Alexa Fluor 546, 10,000 MW (Dextran10K-Alexa546; Thermo Fisher Scientific, Waltham, MA, USA) in H2Od were pipetted onto the transected nerve. The site was covered with Vaseline and the preparation was transferred into fresh AM, where it was incubated for 12-18 h under continuous oxygenation at RT, in the dark. Finally, the Vaseline was removed and the eye cup was rinsed in PB, followed by fixation in 4% PFA/PB for 30 min. Tissue was stored in PB containing 0.025% sodium azide. The retinas were extracted and wholemounted (Ullmann et al., 2012), embedded in Gelatin (see above) and cryosectioned in the horizontal (flattened) plane at 60 µm.

NADPH-diaphorase histochemistry

Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry was conducted following the method described in Fischer and Stell (1999). Briefly, slides carrying retinal sections were washed three times in 0.1 M Tris-Buffer (pH 8.0) and then incubated in 0.1 M Tris-buffer with 1 mg/ml β-NADPH (Sigma-Aldrich Chemie GmbH, Steinheim, Germany; Cat# N5130), 0.4 mg/ml nitrotetrazolium blue (Sigma-Aldrich Chemie GmbH, Steinheim, Germany; Cat# N6876), 2 mg/ml CaCl2 and 0.3% Triton X-100, for 60 minutes at 37°C.
Immunohistochemistry

All antibodies used in this study are listed in Table 1, including their specifications, RRID and dilutions. For anti-CTB and anti-PHAL immunohistochemistry, sections were first immersed in 90% methanol / 3% H$_2$O$_2$ for 12 min to quench endogenous peroxidase activity. After rinsing in PBS, they were incubated overnight at RT in a solution with primary antibodies goat anti-CTB (RRID:AB_10013220) or goat anti-PHAL (RRID:AB_2315144) diluted in PBS/Triton X-100 (PBS-Tx) 0.3% with 5% normal rabbit serum (NRS), followed by rinsing in PBS and incubation with a secondary antibody (biotinylated rabbit anti-Goat [RRID:AB_2336126] diluted in PBS-Tx 0.3% for 2 h at RT). After rinsing, avidin-biotin peroxidase complex (ABC; Vectastain Elite ABC Kit, Vector Laboratories Inc., Burlingame, CA, USA; 3.2 µl/ml in PBS-Tx 0.3% / 4% NaCl) was added. Finally, detection was accomplished by diaminobenzidine (DAB) precipitation in a solution of 0.025% DAB (DAB-buffer tablets for microscopy, Merck KGaA, Darmstadt, Germany), 0.0025% H$_2$O$_2$, 0.069% imidazole and 1% NiSO$_4$ in 0.175M acetate buffer, pH 6.0 (Green et al., 1989). For fluorescence microscopy, sections were incubated for 2 h with Streptavidin-Alexa488 (Streptavidin Alexa Fluor® 488 conjugate, Thermo Fisher Scientific, Waltham, MA, USA) diluted 1:600 in PBS-Tx 0.5%. In cases where BDA was used as a tracer, ABC / DAB or Streptavidin-Alexa488 was applied as above, but directly after the quenching step without primary/secondary antibodies. Retinal sections were reacted for immunofluorescence against Parvalbumin. Tissue was blocked in PBS-Tx 0.5% with 1% bovine serum albumin (BSA) and 10% normal goat serum (NGS). It was incubated over night at RT in primary antibody mouse anti-Parvalbumin (RRID:AB_477329), diluted in PBS-Tx 0.5%. After 4x rinsing in PBS, secondary antibody Alexa Flour 488 goat anti-Mouse (RRID:AB_2534088; diluted in PBS-Tx 0.1%) was added for 6 h at RT. The mouse anti-Parvalbumin generated against purified frog muscle Parvalbumin is highly specific and recognizes a single band of ~12 kDa in Western blots of lysed brain tissue, the molecular weight of Parvalbumin (Ramamarthy and Krubitzer, 2016).

Tyramide Signal Amplification

In the present study, some tracings of thin neural connections had originally produced falsely negative results. Despite the high sensitivity of our tracer of choice CTB (Angelucci et al., 1996) in these cases, standard protocols failed to reveal relevant neuroanatomical details. This indicates that thin or sparse neural circuits may have such low tracer uptake and transport that the sensitivity of standard immunohistochemistry is insufficient to detect them. We found that these limitations
could be overcome by tyramide signal amplification (TSA). This method, applied after the ABC step, strongly amplifies the immunohistochemical signal. In the presence of \(\text{H}_2\text{O}_2 \), the peroxidase activity causes the formation of short-lived radicals of biotin-labeled tyramide, which covalently bind to any nucleophilic residues nearby (Bobrow et al., 1989) and potentiate the biotin-sites available for further detection. Although TSA has been widely used in e.g. *in situ* hybridization techniques, it has very seldom been combined with neuronal tracing (Adams, 1992; Papp and Palkovits, 2014). Our results suggest that by revealing fine neuroanatomical details which would otherwise remain hidden, TSA has the potential to upgrade classical *in vivo* tracing experiments to satisfy the elevated demands of modern microconnectomics (Swanson and Lichtman, 2016; Vega-Zuniga et al., 2016). For performing TSA, protocols up to the ABC step were identical to above. Then, brain- and retina-sections were incubated in 0.0001% biotin-tyramide (IRIS Biotech GmbH, Marktredwitz, Germany; Cat# LS-3500, Lot. 1407008) and 0.003% \(\text{H}_2\text{O}_2 \) in 0.05M borate buffer, pH 8.5, for 30 min. After washing, final detection was performed with either a second ABC step followed by DAB, or Streptavidin-Alexa488 (see above).

Analysis

Sections were mounted on gelatin-coated slides, counterstained according to standard Nissl or Giemsa protocols or left clear, and cover-slipped with DPX Mountant (Sigma-Aldrich Chemie GmbH, Steinheim, Germany; after dehydration/xylene clearing), or *n*-propyl gallate fluorescence mounting medium (Gilloh and Sedat, 1982). Microscopy was performed with an Olympus BX63 microscope with attached digital cameras (DP26 color for brightfield, XM10 monochrome for epifluorescence), or an Olympus Fluoview FV1000/BX61 confocal laser scanning microscope (Olympus, Tokyo, Japan). Images were processed in the microscope software (Olympus Fluoview FV10-ASW v04.02.01.20, RRID:SCR_014215; or CellSens Dimension v1.7, RRID:SCR_014551) and the ImageJ distribution Fiji (Schindelin et al., 2012; RRID:SCR_002285).
Results

Anatomy of the IOC

As previously reported (Gutiérrez-Ibáñez et al., 2012; Krabichler et al., 2015), the palaeognathous Chilean Tinamou appears to lack an isthmo-optic nucleus (ION) in brain sections counter-stained with Nissl or Giemsa (Fig. 3 A, B). However, a CTB injection into the eye retrogradely labels a large number of centrifugal visual neurons in the contralateral isthmic region, as well as a smaller number on the ipsilateral side (Fig. 3 C; Krabichler et al., 2015). We suggest to call this cell group “isthmo-optic complex” (IOC) in Palaeognathae, in order to distinguish it from the ION of neognathous birds. For the present study, we did several new intraocular tracing experiments with CTB and sectioned the brains in different planes (transverse and horizontal) in order to get a better picture of the IOC’s neuroanatomy.

The isthmo-optic tract, which contains the centrifugal axons towards the retina, took the same trajectory as in neognathous birds (Galifret et al., 1971), leaving the IOC dorsolaterally (Fig. 4 Ac, B), then coursing rostrally along the dorsal rim of the TeO (Fig. 4 Aa–Ab; cf. Fig. 7F and 11B in Krabichler et al., 2015) and finally joining the rostroventral stratum opticum in direction of the optic nerve. The IOC was found in a topologically similar position as the neognathous ION (Fig. 4 Aa–Ad). It was located dorsally in the isthmic region and measured approximately 600-700 µm medio-laterally, 700 µm antero-posteriorly and 800-900 µm dorso-ventrally. On its lateral side, it was bordered by the dorsal nucleus of the lateral lemniscus (LLD) and the formatio reticularis lateralis (FRL). Ventral to it lay the A8 dopaminergic cell group (formerly known as rostral locus coeruleus; Reiner et al., 2004), as indicated by a dense cluster of anti-tyrosine-hydroxylase-positive neurons in this region (data not shown). Dorsally and dorso-medially, the IOC was separated from the tegmental pia by a cell-rich region, which according to its cytoarchitecture might be part of the central gray.

In contrast to the ION of most Neognathae, which is a clearly demarcated, laminarly organized nucleus, the Tinamou’s IOC was less well structured. Nevertheless, most retinopetal (CTB-positive) neurons were located in a densely packed ‘core’ region (Fig. 4 B, C, E), while a smaller number of ‘ectopic’ cells was found further away at distances of as much as 500 µm or more (see arrows in Fig. 4 B, C). The ipsilaterally projecting neurons also mostly lay within the IOC core, and no
bilaterally projecting IOC neurons were found after injecting different types of fluorescent CTB (CTB Alexa 488 and 546) into the eyes. Despite its density, the boundary of the IOC core region was not clearly circumscribed but merged into the surrounding neuronal areas. Apart from centrifugal (CTB-positive) neurons, the IOC also contained Nissl-stained CTB-negative neurons (Fig. 4 D), which might either be interneurons or cells from different structures lying interspersed with the IOC neurons.

All CTB-positive IOC neurons had a multipolar morphology with numerous primary dendrites splitting off in various directions (Fig. 4 E, F). Within the IOC core, the neurons were embedded in a dense neuropil from their dendrites (Fig. 4 E, F). They showed no sign of laminar orientation or any other kind of regular organization, as can be seen in both the transverse (Fig. 4 B) and the horizontal plane (Fig. 4 C, E). The diffuse boundary of the IOC core was indicated by a notable decrease in density of the neuropil (Fig. 4 E). Interestingly, beyond the core region a number of dendrites extended radially away and deep into surrounding tissue (arrowheads in Fig. 4 B, C). While some of them may have belonged to peripheral IOC neurons, many could indeed be observed to originate from neurons within the core (see arrowheads in Fig. 4 E for a clear example). They were particularly numerous and long towards ventral, rostral and medial, where they reached into adjacent neural structures such as A8, while sparing more lateral structures such as the LLD (Fig. 4 Aa–Ac, B).

The tectal afferents to the IOC

Prompted by the unusual appearance of the IOC we examined its afferents. In Neognathae, the strongest projection to the ION arises from neurons in L9-10 of the TeO (Cowan, 1970; Uchiyama et al., 1996; Woodson et al., 1991). Therefore, we injected PHAL (n=2) and BDA (n=2) into the TeO of the Chilean Tinamou in order to anterogradely label the tectal afferents to the IOC, and RITC (red fluorescence) into the contralateral eye to retrogradely label the retinopetal IOC neurons. Like CTB, RITC reliably labeled the complete extent of retinal projections to the TeO (Fig 5 A) as well as all retinopetal IOC neurons.

In all cases, the injection sites in the TeO were well defined and lay predominantly centered in the intermediate tectal layers (L8–12). A representative case of an injection with BDA is shown in Fig. 5. The injection site extended from L9 to L13 with no tracer spill or diffusion into other parts (Fig. 5 A, B). The nucleus isthmi pars parvocellularis (Ipc), which characteristically receives a topographic projection from L10 of the TeO, contained a confined band of labeled tectal fibers and retrogradely labeled neurons. In all cases, BDA-labeled axons were present ventral
to the inferior colliculus (IC; in birds also known as MLD, nucleus mesencephalicus lateralis pars dorsalis) and dorsal to the Ipc (Fig. 5 C), i.e. in an equivalent position as the tecto-isthmal tract to the ION in Neognathae. While some of these fibers (see arrows in Fig. 5 C) bent ventrally towards the Ipc, others (see arrowheads in Fig. 5 C) could clearly be traced medially towards the IOC.

Tecto-IOC fibers were consistently found terminating in the IOC core region amidst the retrogradely labeled retinopetal neurons (Fig. 5 D–G). The terminals tended to branch (see arrows in Fig. 5 D, F) and diverge into delicate fields which sometimes spanned considerable areas (Fig. 5 F). Distal ramifications of the terminals contained many varicosities (Fig. 5 G), while fewer were also present on short side branches or ‘en passant’ (see arrowheads in Fig. 5 D–F). Often, varicosities were found in immediate proximity to somata (see lower arrowheads in Fig. 5 E, G) or dendrites (see upper arrowheads in Fig. 5 G) of RITC-labeled cells, suggesting a monosynaptic projection from the TeO to the centrifugal IOC neurons. In other cases, varicosities were found without any immediate RITC-labeled target structure nearby (see e.g. upper arrowheads in Fig. 5 E). These may have either contacted more distal dendrites of centrifugal IOC neurons that were not well labeled by RITC (even compared with CTB; cf. Fig. 4 E, F), or interneurons (cf. Fig. 4 D). In the areas surrounding the IOC core, no tecto-IOC terminals were found in spite of the numerous radial IOC dendrites which traverse these regions (see above; Fig. 4 B, C).

These results show that the TeO in the Chilean Tinamous gives rise to a projection to the IOC core region, where widespread varicose ramifications form ‘divergent’ terminals. As the injection sites were in all cases centered in the intermediate tectal layers, the cells-of-origin of the tecto-IOC projection were likely to be found there. Next, we did *in vivo* injections into the IOC in order to retrogradely label and identify these ‘tecto-IOC’ neurons.

The tecto-IOC neurons

CTB was injected into the isthmic region of 12 Chilean Tinamous, while contralateral intraocular RITC-injections again served to reveal the IOC. In five cases, the injection site covered the IOC, while the remaining unsuccessful injections served as controls. Fig. 6 shows sections from one representative case of a successful injection, amplified with TSA (see Methods). Although in this case the injection site was not completely centered in the IOC (Fig. 6 A), the existence of many CTB/RITC-double-labeled IO neurons (Fig. 6 B) demonstrated that a substantial portion of the IOC was covered by the CTB injection.
In the TeO of all successful IOC injections, retrogradely labeled neurons were found in L10, while other layers (except the deep layers L13-15; see Discussion) were devoid of labeled cells. Specifically, these presumptive tecto-IOC neurons lay in the more superficial portion of L10, designated as L10a (Fig. 6 C, E). They were generally not very numerous, but in some parts of the TeO groups of them occurred together and formed a sparse, regularly spaced monolayer (Fig. 6 C, E). The inter-neuronal spacing varied from approx. 100-150 µm in the caudoventral TeO (Fig. 6 E) to approx. 300 µm in the rostrodorsal TeO (Fig. 6 C). The presumptive tecto-IOC neurons had oval-shaped somata and appeared to be multipolar (Fig. 6 D) possessing both obliquely horizontal and radially ascending/descending dendrites. Although some had an almost bipolar appearance (Fig. 6 C, F), they assumedly possessed additional dendrites not labeled by CTB. In cases where the dendrites were sufficiently labeled by CTB, they could be traced to ascend up to at least L8 and descend down to L10b (Fig. 6 D). Horizontal and obliquely horizontal dendrites extended across the inter-cell spacing towards the neighboring tecto-IOC neurons (see arrowheads in Fig. 6 F). In cases in which the axons were labeled, they were found to descend from the soma through the deep tectal layers (see arrows in Fig. 6 F), splitting off some thin collateral terminals with varicosities in L11-12 (see upper arrow in Fig. 6 F). Importantly, in the control cases where the injection site did not cover any part of the IOC but only nearby surrounding structures, no labeled neurons were found in L10 nor in other intermediate tectal layers. Only the deep layers (L13-15) also contained labeled neurons, which represented tectal pathways to (or passing through) areas surrounding the IOC (see Discussion).

The centrifugal visual projection to the retina

In Neognathae, the main retinal target cells of the ION, the ‘association amacrine cells’ (AACs), are known to be positive for Parvalbumin (Fischer and Stell, 1999; Lindstrom et al., 2009; Sanna et al., 1992; Uchiyama and Stell, 2005) as well as NADPH-diaphorase, while the latter is additionally present in the prominent ‘convergent’ centrifugal terminals (Fischer and Stell, 1999; Lindstrom et al., 2009; Morgan et al., 1994; Nickla et al., 1994). In order to analyze whether these markers also reveal the retinal components of the palaeognathous centrifugal visual system, we performed anti-Parvalbumin immunohistochemistry and NADPH-diaphorase histochemistry in transverse sections of the Chilean Tinamou retina. The chicken (Gallus gallus) served as a neognathous control.

In the Tinamou retina, various Parvalbumin-positive INL cell types were found, of which representatives are shown in Fig. 7 A. Their labeled processes stratified in IPL sublamina III, where they formed a clearly labeled band. None of the labeled
cells in the Tinamou resembled the intensely Parvalbumin-positive AACs found in the ventral retina of the chicken (Fig. 7 B), which had the characteristic elongated morphology (Fischer and Stell, 1999; Lindstrom at al., 2009) and neurite stratification in IPL sublamina I (Sanna et al., 1992; Fischer and Stell, 1999). Analogous to these findings, NADPH-diaphorase histochemistry labeled various INL cell types in the Tinamou (see Fig. 7 C for an example), but none comparable to the elongated NADPH-diaphorase-positive AACs of the chicken (see arrowheads in Fig. 7 D). The latter were furthermore directly contacted by intensely NADPH-diaphorase-positive ‘convergent’ centrifugal terminals (see arrows in Fig. 7 D), while in the Tinamou’s retina no convergent NADPH-diaphorase-positive centrifugal fibers or terminals were observed.

Two different approaches were employed to label the centrifugal fibers in the Tinamou retina: First, we performed in vitro tracings with Dextran10K-Alexa546 from the optic nerve head of freshly dissected eye cups (see Methods), which were analyzed by confocal microscopy of horizontal (flatmount) retinal sections (Fig. 8). The ganglion cell layer was strongly retrogradely labeled in many parts of the retina. In equatorial and ventral parts of the retina, the outer IPL (sublamina I) and border of the INL contained anterogradely labeled fibers with varicosities (Fig. 8 A). These presumptive centrifugal visual terminals were exclusively of the ‘divergent’ type, forming a mesh of widespread horizontal ramifications (see filled arrowheads in Fig. 8 A). Their location at the IPL-INL border was corroborated by the presence of Parvalbumin-positive amacrine cells in the INL (see empty arrowheads in Fig. 8 B, C). The tracing also revealed retrogradely labeled displaced ganglion cells in the INL (see arrow in Fig. 8 A, C). Their dendrites also stratified in the IPL but had a smooth appearance which clearly distinguished them from the varicose centrifugal terminals (Fig. 8 A). The centrifugal terminals and displaced ganglion cell dendrites were mostly located in different strata. This can be seen in Fig. 8 D, which shows a reconstructed transverse section through the confocal z-stack volume, revealing two horizontal bands of Alexa-546 fluorescence signal. One band lay in sublamina II of the IPL and was primarily formed by displaced ganglion cell dendrites, which descended from the soma and stratified there (see arrowheads in Fig. 8 D; Yang et al., 1989; Wilson et al., 2011). Apart from those, only few varicosity-bearing fibers indicating centrifugal terminals were present here. The other more prominent band lay in IPL sublamina I at the border of (and protruding into) the INL, and (apart from a displaced ganglion cell soma) represented centrifugal terminals. In conclusion, the in vitro data suggests that most centrifugal terminals in the Tinamou lie in the IPL sublamina I adjacent to and protruding into the INL, while a minor portion might also terminate in IPL sublamina II.
Next, we processed the retinas of the in vivo IOC-injections for CTB-immunohistochemistry with tyramide signal amplification (TSA; see Methods), using again horizontal sections of retinal whole-mounts. Fig. 9 shows differential interference contrast (DIC) photomicrographs from the contralateral retina of a representative case, which contained numerous centrifugal terminals of the divergent type. The majority of terminals were located in the equatorial and ventral retina. They formed a wide mesh of fibers (Fig. 9 A) and terminated in horizontal ramifications (Fig. 9 B). The granular surface of the INL can be distinguished to lie in the same focal plane as the centrifugal fibers and terminals. Transverse sections, produced in some parts of the retina due to tissue folds, confirmed that most centrifugal terminals lay at the border of IPL and INL (see arrow in Fig. 9 C), sometimes invading the INL (see lower arrowhead in Fig. 9 C), while a portion was present in sublamina I and presumably II of the IPL (see upper arrowhead in Fig. 9 C). Thus, our in vivo and in vitro data were in good agreement with each other. Furthermore, both indicated that the centrifugal fibers and terminals were topographically confined to the equatorial to ventral retina.
Discussion

The present study provides for the first time a detailed description of the centrifugal visual system of a palaeognathous bird. We have analyzed its circuitry in the Chilean Tinamou (*Nothoprocta perdicaria*) by *in vivo* and *in vitro* neural tracing experiments, focusing on the main components which have been studied in various neognathous species for over a century. Our findings indicate that while the Tinamou lacks a well-developed isthmo-optic nucleus (ION), its centrifugal visual neurons form a congregate isthmo-optic complex (IOC) which receives divergent afferents from the optic tectum (TeO) and sends a prominent but exclusively divergent projection to the retina (Fig. 10). Thus, similar to the Neognathous ION, the Palaeognathous IOC mediates a feedback circuit between the TeO and the retina. The elements of this centrifugal visual system circuitry, however, have notable structural and organizational differences. In particular, the multipolar morphology of the IOC neurons and their divergent terminals in the retina show parallels to the 'ectopic centrifugal neurons' which lie outside the neognathous ION. These findings, which will now be discussed in detail, may have important implications for the understanding of evolution, development and function of the centrifugal visual system, and lead the way for future comparative studies.

The Isthmo-Optic Complex

An ION is clearly present in most neognathous birds (Gutiérrez-Ibáñez et al., 2014, 2012). It characteristically consists of small monopolar neurons approximately 15 µm in diameter, which in Neognathae with well-developed ION form a lamina around a central neuropil containing their dendrites (Clarke and Caranzano, 1985; Cowan, 1970; Güntürkün, 1987; Li and Wang, 1999). The morphologically different ectopic centrifugal neurons, which lie outside the proper ION, are more heterogeneous in size and generally multipolar (Clarke and Cowan, 1975; Cowan and Clarke, 1976; Hayes and Webster, 1981; Li and Wang, 1999; Médina et al., 1998; O’Leary and Cowan, 1982; Weidner et al., 1989, 1987; Wolf-Oberhollenzer, 1987). The ION presents a high variety of morphologies with different levels of complexity, but in most species (with some noteworthy exceptions such as Procellariiformes and Pelicaniformes) it is at least clearly distinguishable as a nucleus (Gutiérrez-Ibáñez et al., 2012). Therefore, the reported complete absence of an ION in Palaeognathae, represented by the Southern brown kiwi *Apteryx australis*
(Craigie, 1930), the ostrich *Struthio camelus* (Verhaart, 1971), and more recently the Chilean Tinamou (Gutiérrez-Liébana et al., 2012), has been striking. However, our previous (Krabichler et al., 2015) and present data have shown that intraocular tracer injections in the Chilean Tinamou retrogradely label numerous centrifugal visual neurons in the dorsal isthmus, approximately 4100 contralaterally and 300 ipsilaterally projecting cells on each side (Krabichler et al., 2015). While their location suggests that they correspond to the neognathous ION, they do not form a distinct nucleus but a diffuse cellular group, which we have termed isthmo-optic complex (IOC). The finding that Palaeognathae do in fact possess a substantial number of IO neurons, although differently organized than an ION, is interesting. Foremost, the relatively large and multipolar IOC neurons resemble neognathous ectopic centrifugal neurons rather than ION neurons. Since also crocodiles, the closest living relatives of birds (Fig. 2), possess exclusively “ectopic-like” centrifugal neurons (Ferguson et al., 1978; Médina et al., 2004), we previously hypothesized that the Tinamou’s IOC neurons may correspond to the “ectopic-like” centrifugal neurons of the sauropsidian ancestors, while the ‘true’ ION first evolved in Neognathae after their divergence from the Palaeognathae (Krabichler et al., 2015).

On the other hand, the IOC of the Chilean Tinamou has a much more congregate organization than the IO neurons of crocodiles, which lie dispersed over a widespread area around the isthmus (Médina et al., 2004). In fact, the dense IOC ‘core’ region which contains the majority of the centrifugal neurons, is somewhat reminiscent of the neognathous ION, while relatively few neurons lie scattered over a wider area like ectopic centrifugal neurons (Fig. 4 B, C). Thus, the question of how IOC, ION and ectopic centrifugal neurons relate to one another may not have a simple answer. In Neognathae, developmental evidence suggests that ION neurons and ectopic centrifugal neurons arise from the same embryonic precursors: They are generated over the same time period (Clarke, 1982), are subjected to the same degree of naturally occurring cell death during embryogenesis (O’Leary and Cowan, 1982), and initially have the same morphology, which subsequently changes within the developing ION by dendritic reorientation and cytolamination (Clarke and Kraftsik, 1996). The differentiation into the segregated populations of ION and ectopic centrifugal neurons might therefore be epigenetically induced by different morphogenetic influences resulting from their relations and milieu interactions, rather than because they represent inherently separated cell lineages (O’Leary and Cowan, 1982). Accordingly, the Tinamou’s IOC could constitute an ‘undifferentiated’ organizational layout in which no dendritic reorientation and cytolamination occur, rather than represent either an ‘ectopic centrifugal neurons’ or an ‘ION lineage’. Clearly, this issue cannot be resolved based solely on morphology, but needs to consider more meaningful comparative criteria. In the present study we have focused
on the hodology of the palaeognathous centrifugal visual system to determine whether its IOC has comparable connections as the neognathous ION.

Tectal afferents to the IOC

The ION of Neognathae receives its major afferents from tecto-ION neurons in the TeO. In the chicken, quail and pigeon, these neurons form a narrowly spaced monolayer in L9–10 of the TeO (Crossland and Hughes, 1978; Uchiyama and Watanabe, 1985; Woodson et al., 1991; Miceli et al., 1993, 1997; Uchiyama et al., 1996) and their axons are thought to make one-on-one contacts on single ION cells (Woodson et al., 1991; Uchiyama et al., 1996; Li et al., 1999). In addition, the ION/ectopic centrifugal neurons of neognathous birds possess extra-tectal afferents (Repérant et al., 1989; Miceli et al., 1997, 1999, 2002; Médina et al., 1998), which according to results from transneuronal tracing with RITC (Miceli et al., 1997) and more recently transsynaptic viral vectors (Mundell et al., 2015), originate in several brainstem regions such as the mesencephalic reticular formation, pontine reticular formation and ventral tegmental area (formerly ventral area of Tsai; Reiner et al., 2004). However, it is still unknown if the extra-tectal afferents project to ION cells or ectopic centrifugal neurons or both.

Our tracer injections into the TeO of the Chilean Tinamou showed a clear tectal projection to the IOC (Fig. 5). Moreover, the tecto-IOC fibers appeared to take the same path as the tecto-ION fibers in Neognathae, which converge into the tecto-isthmal tract ventral to the third (i.e. tectal) ventricle (Cowan, 1970; Uchiyama and Watanabe, 1985; Uchiyama et al., 1996; Woodson et al., 1991). However, unlike the topographically confined (‘convergent’) tecto-ION terminals described in Neognathae (Uchiyama et al., 1996; Wylie et al., 2009), tecto-IOC axons were thin and possessed ‘divergent’ varicose terminals, which ramified over wider areas within the IOC core (Fig. 5 E, G). Due to this widespread configuration, the terminals from each tecto-IOC neuron may contact various IOC neurons. Interestingly, no tectal terminals were observed in the areas surrounding the IOC core, even though they contained many radially extending IOC dendrites (Fig. 4 B, C). This might indicate that extra-tectal rather than tectal afferents project onto these dendrites. However, the lack of tectal fibers in these regions might also be a result of the small sizes of the tectal injections. In the future, this issue could be resolved with the help of retrogradely transsynaptic viral vectors.

We identified the tectal neurons giving rise to the tecto-IOC projection by tracer injections into the IOC. Neurons were retrogradely labeled in both intermediate (L10a) and deep (L13–15) layers. The L13–15 neurons most likely represented projections to tegmental structures such as the field A8 (formerly anterior portion of

John Wiley & Sons
This article is protected by copyright. All rights reserved.
locus coeruleus; Reiner et al., 2004), or pathways which traverse peri-IOC regions such as certain descending projections (Reiner and Karten, 1982) or the tecto-tegmental-tectal pathway (Stacho et al., 2016). In fact, labeled L13–15 neurons have also been reported in chicken and pigeons following injections into tectal areas ventrolateral to the ION, while injections confined to the ION never labeled such cells (Woodson et al., 1991).

By all evidence, the cells labeled in L10a (Fig. 6) represented the tecto-IOC neurons. (i) They were located in a similar layer as their neognathous counterparts and likewise appeared to form a regularly spaced monolayer. (ii) They were consistently found in all successful IOC injections. Control cases with injections outside the IOC failed to label any neurons in intermediate tectal layers (i.e. L8–12), analogous to what has been reported in Neognathae (Reiner and Karten, 1982). (iii) Axons of the L10a neurons were sometimes observed with collateral terminals in deep tectal layers L11–12 (Fig. 6 F), which is similar to findings in the quail (Uchiyama and Watanabe, 1985; Uchiyama, 1989; Uchiyama et al., 1996). (iv) The tectal injections which labeled terminals in the IOC were centered in intermediate tectal layers.

The tecto-IOC neurons of the Chilean Tinamou show some differences from their counterparts in Neognathae. First, they appear to have a sparser distribution. The tecto-ION neurons of the chicken (Crossland and Hughes, 1978; Woodson et al., 1991), the quail (Uchiyama and Watanabe, 1985; Uchiyama et al., 1996) and the pigeon (Miceli et al., 1993; Woodson et al., 1991), lie in a narrowly spaced monolayer around the TeO. In accordance with their assumed one-on-one projection to ION cells, their total number has been estimated to 7000–10,000 in the quail (Uchiyama et al., 1996), 9,500 in the chicken (Clarke et al., 1976) and 12,000 in the pigeon (Woodson et al., 1991). Our results suggest that the Chilean Tinamou tecto-IOC neurons represent a smaller population with broader inter-cell spacing (100–300 µm; Fig. 6) than the tecto-ION neurons of Neognathae such as the quail (50–100 µm; Uchiyama et al., 1996) and the pigeon (30–175 µm; Woodson et al., 1991). Though our data do not permit us to provide a confident estimation of the number of tecto-IOC neurons, they could (by interpolating the numbers and inter-cell spacing in Neognathae) amount to a few thousand. It should be noted that even though this may suggest similar numbers of tecto-IOC and IOC neurons in the Tinamou (see above), a precisely tuned 1:1 ratio as in Neognathae is unlikely, because the tecto-IOC projection is divergent rather than 1-on-1 as the tecto-ION projection.

Another difference regards morphology. The tecto-ION cells of Neognathae such as quail (Uchiyama et al., 1996), pigeon (Woodson et al., 1991) and chicken (Heyers et al., 2004) are multipolar, with a conspicuous ‘willow-like’ appearance, which results from thick dendrites bending downwards to deeper layers and
arranging themselves into radial columns (Uchiyama and Watanabe, 1985). While the Tinamou’s tecto-IOC neurons are also multipolar, their dendrites are not arranged in columns but extend horizontally and obliquely over wider tectal areas (Fig. 6). Interestingly, these dendrites often spread towards neighboring tecto-IOC neurons, which might permit their population to functionally cover the entire TeO with their receptive fields.

All evidence combined suggests that the palaeognathous Chilean Tinamou possesses a TeO-IOC projection originating from a population of tectal neurons in L10a. Their morphological dissimilarities from the neognathous tecto-ION neurons could be regarded as evidence that they do not correspond to those but perhaps to a different lineage of neurons projecting to the ectopic centrifugal neurons. However, there is only limited evidence for a ‘tecto-ectopic’ projection in Neognathae (O’Leary and Cowan, 1982; Clarke, 1985; Woodson et al., 1991; Uchiyama et al., 1996), and the identity of the putative ‘tecto-ectopic’ neurons is unknown. By contrast, the tecto-IOC and tecto-ION neurons could indeed be homologous, and their main differing characters, for example the wide-spread dendrites of the tecto-IOC neurons, could be morphogenetically induced by factors such as their wider inter-cell spacing. In any case, the connectivity between the TeO and the centrifugal visual system seems to be an ancestral characteristic of archosauria (Fig. 2), since there is evidence that the IO neurons of crocodiles receive a tectal projection. Tracer injections into the TeO of Caiman crocodilus have been reported to label fibers and some terminals in its IO area (Ferguson et al., 1978). However, the tectal fibers have not been conclusively shown to contact the IO neurons, and the putative tecto-IO neurons have so far not been identified. The tecto-ION neurons of pigeons can be conveniently labeled by retrograde transneuronal transport of intraocularly injected RITC (Miceli et al., 1997, 1993), while this has unfortunately failed both in crocodiles (Médina et al., 2004) as well as in preliminary experiments performed by us in the Chilean Tinamou. Possibly, very dense connections are necessary for detectable transneuronal RITC transport to occur. In the future, retrograde trans-synaptic viral vector tracing may facilitate comparative studies of the afferents to centrifugal visual neurons in birds and reptiles (Mundell et al., 2015).

Centrifugal visual fibers to the retina

In Neognathae such as the chicken (Lindstrom et al., 2009), Japanese quail (Uchiyama and Ito, 1993) and pigeon (Hayes and Holden, 1983; Woodson et al., 1995), centrifugal fibers from both ION cells and ectopic centrifugal neurons project to the retina via the isthmo-optic tract (Catsicas et al., 1987b; Cowan and Powell, 1963; Crossland and Hughes, 1978; Galifret et al., 1971; Hayes and Webster, 1981;
Wallenberg, 1898) and terminate within the exterior segment of the IPL or at the interior edge of the INL (Chmielewski et al., 1988; Dogiel, 1895). ION axons form striking ‘convergent’ terminals (Morgan et al., 1994; Nickla et al., 1994; Fischer and Stell, 1999; Lindstrom et al., 2009) on ‘association amacrine cells’ (Ramón y Cajal, 1893, 1911; Mariani, 1982; Uchiyama and Stell, 2005), which are readily identifiable by their striking morphology and strong staining for Parvalbumin and NADPH-diaphorase (Fischer and Stell, 1999; Uchiyama and Stell, 2005; Lindstrom et al., 2009, 2010; Wilson et al., 2011; present results, Fig. 7 B). The axons of ectopic centrifugal neurons form ‘divergent’ terminals, which widely ramify in the IPL over a greater area of retinal space (Dogiel, 1895; Maturana and Frenk, 1965; Hayes and Holden, 1983; Chmielewski et al., 1988; Fritzsch et al., 1990; Uchiyama and Ito, 1993; Woodson et al., 1995; Lindstrom et al., 2009). They have been suggested to contact displaced ganglion cells (Dogiel, 1895; Maturana and Frenk, 1965; Hayes and Holden, 1983; Nickla et al., 1994) and “flat” amacrine cells (Dogiel, 1895; Maturana and Frenk, 1965).

In the Chilean Tinamou retina, we exclusively found ‘divergent’ centrifugal visual fibers by in vitro as well as in vivo tracing experiments. The absence of the ‘convergent’ type was corroborated by the lack of any strongly-labeled NADPH-diaphorase-positive structures in the INL/IPL that would resemble the pericellular terminal nests in the chicken (Fig. 7 D). The divergent terminals formed a dense varicosity-rich mesh in equatorial and ventral parts of the retina (Fig. 8; 9 A), similar to the divergent terminals of ectopic centrifugal neurons in the pigeon (Woodson et al., 1995; compare their Fig. 15 with our Fig. 9 A). Within the retina, the terminals were located in the outermost IPL and partially entered the innermost INL (Fig. 8 D; 9 C), which was in the in vitro tracings (Fig. 8) identified by Parvalbumin-positive amacrine cells (Hamano et al, 1990; Sanna et al., 1992; Fischer and Stell, 1999) and retrogradely labeled displaced ganglion cells (Karten et al., 1977; Wilson et al., 2011). Interestingly, in Neognathae only the convergent ION terminals have been described to enter the INL (Ramón y Cajal, 1911; Dowling and Cowan, 1966; Lindstrom et al., 2009), while the divergent ones remain in the IPL (Dogiel, 1895; Chmielewski et al., 1988; Fritzsch et al., 1990).

The findings that the IOC retinal terminals in the Chilean Tinamou have a divergent morphology and do not form prominent NADPH-diaphorase-positive terminals on Parvalbumin-positive AACs, could be seen as supporting the notion that the IOC neurons correspond to ectopic centrifugal neurons of Neognathae. Unfortunately, our data have not revealed the actual targets of the IOC fibers in the retina. Because the IPL sublamina where the displaced ganglion cells dendrites ramify contained only few (if any) centrifugal terminals (Fig. 8 D), displaced ganglion cells are unlikely to be the major targets.
An intriguing question is whether the Tinamou possesses cells which correspond to the neognathous AACs but receive divergent IOC terminals instead of convergent ones. As one possibility, such palaeognathous AACs could be among the Tinamou’s NADPH-diaphorase- and Parvalbumin-positive INL neurons, but morphologically different from chicken AACs. However, very few Parvalbumin-positive processes are found in sublamina I of the Tinamou’s IPL (Fig. 7 A), although this is in chicken the main distribution zone of the AAC processes and therefore strongly labeled (Fig. 7 B; Hamano et al., 1990; Sanna et al., 1992; Fischer and Stell, 1999). Another possibility could be that palaeognathous AACs exist, but either ancestrally or due to secondary loss do not express both Parvalbumin and NADPH diaphorase (or at least not sufficiently for detection by histochemical methods). Finally, AACs might be an evolutionary novelty only found in Neognathae.

This also leads to the question how the neognathous AACs, the convergent centrifugal fibers, and the intimate connection between the two originally evolved. It should be noted that divergent centrifugal visual fibers terminating at the border of IPL and INL are the prevalent configuration in almost all vertebrates (Repérant et al., 2007, p. 171), including humans (Repérant and Gallego, 1976). Convergent fibers, on the other hand, have only been reported in neognathous birds with a well-developed ION. Interestingly, their connection with the AACs is not entirely exclusive: In the pigeon, the convergent ION fibers form loose pericellular nests with many collaterals (Dogiel, 1895; Dowling and Cowan, 1966; Hayes and Holden, 1983; Maturana and Frenk, 1965; Woodson et al., 1995), and even the dense pericellular nests in the chicken split off side branches, which form synaptic boutons on other unknown targets (Lindstrom et al., 2009).

Thus it is conceivable that the convergent terminals first emerged in Neognathae by reinforcing a specific connection (i.e. with the AACs) out of a pool of originally existing ‘divergent’ connections, along with the differentiation of the centrifugal visual system into an ECN and an ION pathway. Consequently, rather than being a completely de novo evolutionary innovation of Neognathae, cells homologous to the AACs could exist in Palaeognathae such as the Chilean Tinamou, and perhaps even in crocodiles. Furthermore it is possible that the high level of plasticity, which is indicated by the variability of the ION among Neognathae (Gutiérrez-Ibáñez et al., 2012), is retained at all levels of the avian centrifugal visual system. Thus, in Neognathae with poorly developed or absent ION such as storks (Showers and Lyons, 1968) and sea birds (Procellariiformes and Pelicaniformes; Gutiérrez-Ibáñez et al., 2012), a reversal to an undifferentiated centrifugal visual system configuration similar as in the Chilean Tinamou might again be found, including the terminals and their targets in the retina. In the future, broad comparative studies of the retinal centrifugal visual system components in Neognathous and...
Palaeognathous birds as well as crocodiles could give new insights into evolutionary and developmental principles of the avian centrifugal visual system.

Implications for functional hypotheses of the centrifugal visual system

The striking nature of the avian centrifugal visual system has led to a long-standing debate about its functional and behavioral significance (Repérant et al., 1989) and many hypotheses have been put forward (reviewed in Wilson and Lindstrom, 2011). Previous studies have almost exclusively focused on Neognathae with well-developed, specialized ION. Their centrifugal visual system is generally thought to constitute an excitatory feedback loop (Li et al., 1999; Pearlman and Hughes, 1976) with a well-defined topography as demonstrated both anatomically (Crossland and Hughes, 1978; McGill et al., 1966a, 1966b; Uchiyama et al., 1996; Wylie et al., 2009) and physiologically (Holden and Powell, 1972; Miles, 1972; Li et al., 1998; Uchiyama et al., 1998). Functionally, this presumably results in a considerable spatial resolution due to the high number of ION neurons, “one-on-one” projecting tecto-ION neurons, and “one-on-one” convergent ION fibers to retinal AACs. However, the ION size and complexity among Neognathae are highly variable. In fact, small or indistinguishable ION are found in many species that are neither basal nor necessarily closely related (Shortess and Klose, 1975; Weidner et al., 1987; Feyerabend et al., 1994; Gutiérrez-Liébanes et al., 2012).

The Chilean Tinamou represents an excellent model for studying a centrifugal visual system with an undeveloped ION and only divergent fibers. While the participation of the TeO in the circuit and the congregate IOC organization suggest that the system is in some way topographically organized, the divergent connections between its components should result in a comparatively low spatial resolution. This makes it unlikely that the Chilean Tinamou's centrifugal visual system is involved in any spatially accurate mechanisms of visual attention. The well-differentiated ION has for instance been suggested to represent an adaptation in ground-feeding birds, for functions such as retinal spot-lighting or attention scanning during pecking (Galifret et al., 1971; Holden, 1990; Marín et al., 1990; Uchiyama, 1989; Uchiyama et al., 1998; Uchiyama and Barlow, 1994). Although the Chilean Tinamou is an exclusively ground-living and ground-feeding bird (Cabot, 1992), it is improbable that its IOC is involved in such tasks. However, because the IOC projection targets only the equatorial to ventral retina similar to both the convergent and divergent fibers in Neognathae (Woodson et al., 1995; Lindstrom et al., 2009), it might in some way serve for switching attention between coarse retinal regions such as from ventral to dorsal (Clarke et al., 1996; Gutiérrez-Liébanes et al., 2012); or for some rough form of
covert spatial attention by 'illuminating' retinal regions without eye-head movements (Ohno and Uchiyama, 2009). Wilson & Lindstrom (2011) suggested on grounds of the asymmetrical centrifugal projection that well-developed ION could serve for detecting aerial predators by switching attention from shadows on the ground towards the sky. However, this hypothesis is contradicted by the existence of many aerially predated Neognathae with small ION (Gutiérrez-Ibáñez et al., 2012). Likewise, the Chilean Tinamou has not developed a more specialized ION despite being heavily preyed on by diurnal raptors (Figueroa and Corales, 1999; Jiménez and Jaksic, 1989).

Such functional comparisons with Neognathae must consider the different organization of the ION-based and IOC-based centrifugal visual system, which probably imply different functions as well. Possibly the structural similarities between the Tinamou’s IOC and the neognathous ‘ectopic centrifugal neurons’ circuitries imply functional similarities, so that the Tinamou might serve as a model for studying the functional role of Neognathous ectopic centrifugal neurons. While the ectopic centrifugal neurons have unfortunately been barely investigated, recent studies with lesion experiments have suggested that the chicken centrifugal visual system (especially the ectopic centrifugal neurons) might play a role in regulating eye development (Dillingham et al., 2013, 2016). In order to test this hypothesis, similar studies could be performed in the Tinamou.

Apart from that, the Tinamou could serves as a model for studying the functional role of extra-tectal afferents to the centrifugal visual system, which may for example contact the numerous radially extending IOC dendrites. The structures into which these dendrites extend could give a first hint towards their possible roles. For example, many of them are found in the central gray, which has recently been proposed as being implicated in tonic immobility to predator attacks in pigeons (Melleu et al., 2016). Interestingly, a striking behavior of the Tinamou is that it freezes when in danger (and only as a last resort jumps up and flies forcefully away; Cabot, 1992). Thus, IOC dendrites might receive projections from central gray neurons or their affiliated circuits, modulating the centrifugal visual system during tonic immobility, possibly affecting visual attention. While this is of course very speculative, it may be worthwhile to study the radially extending IOC dendrites and the extra-tectal IOC afferents in detail.

Our present study stresses the importance of comparative neurobiology, since comparison can reveal the context in which neuronal circuits have evolved, and the functions in which they are possibly involved. With respect to the centrifugal visual system, we suggest to widen the range of avian (and reptilian) model organisms, in order to study its plasticity and how it may correlate with phylogeny as well as different life-styles and behaviors. Palaeognathous birds hereby represent an
important link due to their long evolutionary divergence from Neognathae, and in this respect the Chilean Tinamou is becoming increasingly established as a valuable model for comparative neurobiology (Corfield et al., 2015; Krabichler et al., 2015).

Acknowledgments

We wish to thank Solano Henriquez, Elisa Sentis and Birgit Seibel for their help and excellent technical assistance. We are grateful towards Prof. Jorge Mpodozis, Dr. Cristian González-Cabrera and Cristian Morales for providing valuable help during some of the experiments.

Conflict of interest statement

We, the authors, declare that we do not have any conflicts of interest.

Role of authors

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: QK, TVZ, GM, HL. Acquisition of data: All in vivo and in vitro experiments were conducted at the Universidad de Chile. Most of them were done by QK during several research visits, while a few complementary experiments were done by MF, DC, TVZ and GM. Histology and histochemistry were performed by QK at the Universidad de Chile and at the Technische Universität München in Germany. Analysis and interpretation of data: QK, TVZ, CG, HL, GM. Drafting of the manuscript: QK. Critical revision of the manuscript for important intellectual content: TVZ, CG, HL, GM. Obtained funding: GM, HL. Study supervision: HL and GM.

O’Leary, D.D.M., Cowan, W.M., 1982. Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and

Ramón y Cajal, S., 1893. La rétine des vertébrés. La Cellule 9, 119–257.

Shortess, G.K., Klose, E.F., 1975. The area of the nucleus isthmo-opticus in the American kestrel (Falco sparverius) and the red-tailed hawk (Buteo jamacensis). Brain Research 88, 525–531. doi:10.1016/0006-8993(75)90665-4

Figures

Figure 1
Schematic of the centrifugal visual system circuitry in birds.

Left: In Neognathae, the isthmo-optic nucleus (ION) is an organized isthmic structure that receives a topographic projection from the optic tectum (TeO). The IO neurons project to the ventral half of the contralateral retina, where they synapse on specific target cells in the inner nuclear layer (INL), called ‘association amacrine cells’ (AACs). These are axon-bearing and are thought to project to ganglion cells in other parts of the retina. Tectofugal ganglion cells send axons to the TeO, which contact the L3-neurons projecting to the ION. Right: In Palaeognathae, the IO neurons form a diffuse structure (isthmo-optic complex, IOC) at a comparable location. The circuitry in which these neurons participate has so far not been studied. Schematic adapted from Uchiyama et al. (2012).

Figure 2
Abbreviated cladogram showing the position of Tinamous within the phylogenetic tree of the Archosauria. Phylogeny and divergence times inferred from a combination of nuclear and mitochondrial genome data and fossil markers (based on Brusatte et al., 2015, and Yonezawa et al., 2017). Note that the two grand extant clades of birds, Palaeognathae and Neognathae, are separated by approximately 100 million years of divergent evolution.

Figure 3
The isthmo-optic neurons in the Chilean Tinamou do not form a clear isthmo-optic nucleus (ION).

A–B: In Nissl-stained brain sections at the level of the isthmus, an ION is not distinguishable. C, D: Adjacent sections from the same brain as in A and B, but processed for immunohistochemical detection of intraocularly injected tracer Cholera Toxin B subunit (CTB) and counterstained with Giemsa. This reveals a diffuse but cell-rich cluster of retrogradely labeled IO neurons, the isthmo-optic complex (IOC). A large number of CTB-positive cells are found contralateral to the injected eye (D), while few are marked on the ipsilateral side (C).
Figure 4

Detailed anatomy of the Chilean Tinamou’s isthmo-optic complex (IOC) labeled by intraocular injection of Cholera Toxin B subunit (CTB).

Aa–Ad: Antero-posterior series of coronal sections showing the neuroanatomical location and dimension of the IOC in the dorsal isthmus. It is found at the level of the trochlear nucleus (IV) and trochlear nerve (nIV), and is surrounded by the dorsal nucleus of the lateral lemniscus (LLD), formatio reticularis lateralis (FRL), central gray (G Ct) and field A8. In the TeO, anterogradely labeled retinal projections are also CTB-positive (dark staining). Section planes with relative stereotaxic coordinates are indicated by the schemata at the bottom. **B:** A coronal section through the IOC. The isthmo-optic tract (TIO) can be seen leaving the IOC dorsally. The IOC contains a core region densely packed with IO neurons and their dendrites. Some peripheral IO neurons are located relatively far away from the IOC core (arrow). Dendrites originating from the core region can be found extending away into surrounding neural structures, such as A8 (arrowheads). **C:** A horizontal section through the IOC, showing the dense core region and few single IO neurons (arrows) lying at considerable distances from it. The radially extending core dendrites (arrowheads) are predominantly directed towards anterior and medial. **D:** High power photomicrograph within the IOC core in a section counterstained with Nissl. Among the CTB-positive IO neurons (dark DAB-staining), many CTB-negative neurons (arrowheads) can be found, which might be interneurons. **E:** Medium power photomicrograph of the IOC core region with its numerous multipolar IO neurons. Within the core, the dendritic neuropil has a very high density (see also F), which however rapidly declines at the border of the core region (bottom). Some core neuron dendrites extend beyond the border (arrowheads), indicating that the IOC’s radially extending dendrites (cf. B and C) may largely originate from within the core. **F:** High power photomicrograph of two IOC neurons in the IOC core. Note their multipolar morphology and the dense dendritic neuropil that surrounds them.

Orientation: a. anterior; d. dorsal; l. lateral. Abbreviations: A8 field A8; Cb cerebellum; FRL formatio reticularis lateralis; G Ct central gray; ICC central subnucleus of the inferior colliculus (in birds also known as nucleus mesencephalicus lateralis pars dorsalis, MLd); Imc nucleus isthmi, pars magnocellularis; lpc n. isthmi, pars parvocellularis; LLD dorsal n. of the lateral lemniscus; me5 mesencephalic trigeminal tract; IV trochlear nucleus; nIV trochlear nerve; TeO optic tectum; TIO isthmo-optic tract.
Figure 5

Tecto-IOC terminals after tracer injections into the TeO.

Confocal microscopy images in transverse brain sections (section plane indicated by pictogram in upper right corner in A). **Magenta**: tracing after intraocular injection of Rhodamine B isothiocyanate (RITC). **Green**: Biotinylated dextran amine 3 kDa (BDA) injected into the TeO, revealed by Streptavidin-Alexa488. **A**: Low-power photomicrograph of a coronal section containing the BDA-injection site in the TeO (green). The retinal projections to the TeO as well as the anterior portion of the IOC are labeled by RITC (magenta). **B**: High-power photomicrograph of the tectal injection site, which was centered in the intermediate layers (L8–12). **C**: BDA-labeled axons in the region of the tecto-isthmal tract between IC and Ipc (see inset in A). While some axons bend towards the isthmi nuclei Ipc and Imc (see arrows), others run in direction of the IOC (see arrowheads). **D**: BDA-labeled tecto-IOC terminals (green), which ramify (see arrow) among the IOC neurons (magenta), have a varicose appearance, and some varicosities are found in close proximity to IOC neurons (see arrowheads). **E**: Enlargement of inset in D. Varicosities can be found in immediate opposition to an IOC neuron soma (bottom arrowheads) as well as at some distance (top arrowheads). Short side-branches can be distinguished in both cases. **F**: ‘Divergent’ tecto-IOC terminal which splits into wide ramifications (see arrows). **G**: Enlargement of inset in F. Many varicosities of a terminal arborization lie in direct proximity to RITC-labeled IOC somata or dendrites (see arrowheads), indicating synaptic contacts.

Orientation: **d.** dorsal; **l.** lateral. Abbreviations: **IC** inferior colliculus (in birds also known as nucleus mesencephalicus lateralis pars dorsalis, MLd); **Imc** nucleus isthmi, pars magnocellularis; **Ipc** n. isthmi, pars parvocellularis.

Figure 6

Tecto-IOC projection neurons in the TeO, retrogradely labeled by tracer injections into the IOC region.

Confocal microscopy images of a representative case in which the injection partly covered the IOC. Transverse brain sections (section plane indicated by pictograms in upper right corners). **Magenta**: intraocularly injected Rhodamine B isothiocyanate (RITC). **Green**: Cholera Toxin B subunit (CTB) revealed by immunofluorescence (intensified by TSA; see Methods). **A**: Injection site in the IOC region. **B**: High-power photomicrograph of position indicated by inset in A. Although the center of the CTB injection only partly covered the IOC, many centrifugal visual neurons in the middle of
the IOC were double-labeled with RITC and CTB (see arrowheads), indicating that the injection sufficiently spread into the IOC zones. **C–F:** Presumptive tecto-IOC neurons in layer (L) 10a of the TeO retrogradely labeled by CTB, found in regularly spaced groups at various tectal positions. **C:** Group of tecto-IOC neurons in the rostrodorsal TeO. An asterisk indicates a labeled neuron in L13, which probably belongs to a descending tectal projection that passes through the area of the injection. **D:** High-power photomicrograph of one tecto-IOC neurons (see inset in C), showing its multipolar dendritic morphology (see arrowheads) **E:** Group of tecto-IOC neurons in the caudoventral TeO, apparently with a narrower inter-neuronal spacing. **F:** High-power photomicrograph of one of them (see inset in E). Some dendrites extend across the inter-neuronal space towards neighboring cells while others extend more radially through the TeO (see arrowheads). The axon which projects upon the IOC, splits off some collateral branches which terminate in L11/12 (see arrows).

Figure 7

Histochemical comparison of centrifugal visual system elements in transverse sections of the retina of the Chilean Tinamou (left) and the domestic chicken (right).

A–B: Anti-Parvalbumin immunofluorescence in the Tinamou (A) and the chicken (B). Labeled cell types are found in in the inner nuclear layer (INL) of both species (arrowheads). However, the Tinamou does not appear to possess cells which resemble the conspicuous elongated ‘association amacrine cells’ (AACs) easily identified in the chicken (see arrowheads in B). [Note that the thickness of IPL sublamina I in B appears overrepresented due to the collapsed z-stack image.]

C–D: NADPH-diaphorase histochemistry in the Tinamou (C) and the chicken (D). In the chicken, this again labels the elongated AACs (see arrowhead in D) and also the ‘convergent’ terminals (see arrows in D) from centrifugal ION fibers in the IPL, which synapse on AACs. In the Tinamou, although NADPH-diaphorase-positive cell types are present (see arrowhead in C for an example), none can be identified as AACs by any given criteria. Furthermore, no NADPH-diaphorase-positive ‘convergent’ centrifugal visual terminals are found.

Figure 8

Centrifugal visual fibers and terminals in the Chilean Tinamou retina, labeled by in vitro tracing with Dextran10K-Alexa546.

A–C: Confocal photomicrograph in a horizontal retinal section at the level of the border between INL and IPL. Magenta corresponds to Dextran10K-Alexa546 (A),
green to anti-Parvalbumin-immunofluorescence (B), and C shows the merge of both. Anterogradely labeled centrifugal terminals with many varicosities (magenta) can clearly be distinguished in the IPL. They lie in direct proximity to the INL marked by anti-Parvalbumin-labeled amacrine cells (green; see empty arrowheads). The terminals frequently ramify (see filled arrowheads) and form a big field. A retrogradely labeled displaced ganglion cell (dGC) is also present in the INL (note the smooth appearance of its dendrites). D: Reconstruction of the z-axis profile through the same confocal z-stack volume. The bulk of varicosity-rich centrifugal fibers (magenta) form a stratum in direct proximity to the INL. The INL can easily be identified by Parvalbumin-positive amacrine cells and a retrogradely labeled displaced ganglion cell whose axon ascends through the IPL. A second Dextran10K-Alexa546-labeled stratum is found where the dendrites of the displaced ganglion cell horizontally ramify.

Figure 9

Centrifugal visual fibers and terminals in the Chilean Tinamou retina, labeled by in vivo tracing from the IOC.

CTB-immunohistochemistry in the retina (TSA-enhanced; see Methods) after in vivo CTB-injections into the IOC (cf. Fig. 5). The small pictogram in the upper right corner of A indicates the positions of the photomicrographs in the whole-mounted retina. **A–B:** Horizontal sections of retinal whole-mounts. **A:** Low-power differential interference contrast (DIC) photomicrograph at a central retinal position. A dense mesh of anterogradely labeled ‘divergent’ centrifugal visual terminals is present in the retina at the border between IPL and INL (the cell-rich INL can be identified by the grainy appearance due to DIC). **B:** Medium-power DIC photomicrograph at a nasal retinal position. An arriving centrifugal visual fiber terminal splits (see arrowhead) and ramifies into a varicosity-rich terminal. **C:** High-power DIC photomicrograph of a transverse section through the retina. The centrifugal terminals (see arrowheads) mostly terminate around the border (see arrow) of INL and IPL, slightly protruding into the INL.

Figure 10

Schematic of the palaeognathous centrifugal visual system circuitry, updated by the new data.

As shown by the present study, the isthmo-optic complex (IOC) of the Chilean Tinamou forms part of a comparable general circuitry as the isthmo-optic nucleus...
(ION) of Neognathae: It receives afferents from tecto-IOC neurons in the TeO and sends centrifugal visual efferents to the retina. In contrast to Neognathae with a well-developed ION, the tecto-IOC axons end as divergent terminals in the IOC, as do the retinopetal IOC fibers in the retina. The retinal targets of the IOC continue to be unknown, but the centrifugal projection seems to be asymmetrical as in Neognathae, since it is confined to the equatorial and ventral retina.
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Antigen</th>
<th>Immunogen</th>
<th>Source, Cat. #, Host Species, clonality, RRID</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-CTB</td>
<td>CTB (cholera toxin B subunit)</td>
<td>purified choleragenoid (cholera toxin B subunit aggregate)</td>
<td>List Biological Laboratories Inc., Campbell, CA, USA; Cat# 703; Lot. 7031E goat (polyclonal) RRID:AB_10013220</td>
<td>1 : 40,000</td>
</tr>
<tr>
<td>anti-PHAL</td>
<td>PHAL (Phaseolus vulgaris leucoagglutinin)</td>
<td>purified Phaseolus vulgaris erythro/leucoagglutinin (E+L)</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA; Cat# BA-0224; Lot. W1121 goat (polyclonal) RRID:AB_2315144</td>
<td>1 : 2,000</td>
</tr>
<tr>
<td>anti-Parvalbumin</td>
<td>Parvalbumin</td>
<td>purified frog muscle parvalbumin</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim, Germany; Cat# P3088; Lot. 122M4774V mouse (monoclonal) RRID:AB_477329</td>
<td>1 : 2,000</td>
</tr>
<tr>
<td>biotinylated anti-Goat, made in rabbit</td>
<td>goat IgG (H+L)</td>
<td>purified goat IgG</td>
<td>Vector Laboratories Inc., Burlingame, CA, USA; Cat# BA-5000 rabbit RRID:AB_2336126</td>
<td>1 : 1,500</td>
</tr>
<tr>
<td>Alexa Fluor 488 anti-Mouse, made in goat</td>
<td>mouse IgG (H+L)</td>
<td>mouse IgG (H+L)</td>
<td>Thermo Fisher Scientific, Rockford, IL, USA; Cat# A-11029; Lot. 1170049 goat (polyclonal) RRID:AB_2534088</td>
<td>1 : 500</td>
</tr>
</tbody>
</table>
Table of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>association amacrine cell</td>
</tr>
<tr>
<td>BDA</td>
<td>biotinylated dextran amine, 3 kDa</td>
</tr>
<tr>
<td>CTB</td>
<td>Cholera toxin B subunit</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidine</td>
</tr>
<tr>
<td>FRL</td>
<td>formatio reticularis lateralis</td>
</tr>
<tr>
<td>Imc</td>
<td>nucleus isthmi, pars magnocellularis</td>
</tr>
<tr>
<td>INL</td>
<td>inner nuclear layer</td>
</tr>
<tr>
<td>IO</td>
<td>isthmo-optic</td>
</tr>
<tr>
<td>IOC</td>
<td>isthmo-optic complex</td>
</tr>
<tr>
<td>ION</td>
<td>isthmo-optic nucleus</td>
</tr>
<tr>
<td>IV</td>
<td>trochlear nucleus</td>
</tr>
<tr>
<td>Ipc</td>
<td>nucleus isthmi, pars parvocellularis</td>
</tr>
<tr>
<td>IPL</td>
<td>inner plexiform layer</td>
</tr>
<tr>
<td>LLD</td>
<td>dorsal nucleus of the lateral lemniscus</td>
</tr>
<tr>
<td>MLd</td>
<td>nucleus mesencephalicus lateralis, pars dorsalis</td>
</tr>
<tr>
<td>nIV</td>
<td>trochlear nerve</td>
</tr>
<tr>
<td>PHAL</td>
<td>Phaseolus vulgaris leucoagglutinin</td>
</tr>
<tr>
<td>RITC</td>
<td>Rhodamine B isothiocyanate</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>tecto-IO</td>
<td>tecto-isthmo-optic</td>
</tr>
<tr>
<td>TeO</td>
<td>optic tectum</td>
</tr>
<tr>
<td>TIO</td>
<td>isthmo-optic tract</td>
</tr>
<tr>
<td>TSA</td>
<td>tyramide signal amplification</td>
</tr>
</tbody>
</table>
Figure 1. Schematic of the centrifugal visual system circuitry in birds.

Left: In Neognathae, the isthmo-optic nucleus (ION) is an organized isthmic structure that receives a topographic projection from the optic tectum (TeO). The IO neurons project to the ventral half of the contralateral retina, where they synapse on specific target cells in the inner nuclear layer (INL), called ‘association amacrine cells’ (AACs). These are axon-bearing and are thought to project to ganglion cells in other parts of the retina. Tectofugal ganglion cells send axons to the TeO, which contact the L9-neurons projecting to the ION.

Right: In Palaeognathae, the IO neurons form a diffuse structure (isthmo-optic complex, IOC) at a comparable location. The circuitry in which these neurons participate has so far not been studied. Schematic adapted from Uchiyama et al. (2012).
Abbreviated cladogram showing the position of Tinamous within the phylogenetic tree of the Archosauria.

Phylogeny and divergence times inferred from a combination of nuclear and mitochondrial genome data and fossil markers (based on Brusatte et al., 2015, and Yonezawa et al., 2017). Note that the two grand extant clades of birds, Palaeognathae and Neognathae, are separated by approximately 100 million years of divergent evolution.†

Fig. 2
130x59mm (300 x 300 DPI)
The isthmo-optic neurons in the Chilean Tinamou do not form a clear isthmo-optic nucleus (ION).

A–B: In Nissl-stained brain sections at the level of the isthmus, an ION is not distinguishable. C, D: Adjacent sections from the same brain as in A and B, but processed for immunohistochemical detection of intraocularly injected tracer Cholera Toxin B subunit (CTB) and counterstained with Giemsa. This reveals a diffuse but cell-rich cluster of retrogradely labeled IO neurons, the isthmo-optic complex (IOC). A large number of CTB-positive cells are found contralateral to the injected eye (D), while few are marked on the ipsilateral side (C).

Orientation: d. dorsal; l. lateral. Abbreviations: TeO optic tectum; Cb cerebellum; IV trochlear nucleus.

Adapted from Krabichler et al. (2015).

Fig. 3

172x150mm (300 x 300 DPI)
Figure 4

Detailed anatomy of the Chilean Tinamou’s isthmo-optic complex (IOC) labeled by intraocular injection of Cholera Toxin B subunit (CTB).

Aa–Ad: Antero-posterior series of coronal sections showing the neuroanatomical location and dimension of the IOC in the dorsal isthmus. It is found at the level of the trochlear nucleus (IV) and trochlear nerve (nIV), and is surrounded by the dorsal nucleus of the lateral lemniscus (LLD), formatio reticularis lateralis (FRL), central gray (GCl) and field A8. In the TeO, anterogradely labeled retinal projections are also CTB-positive (dark staining). Section planes with relative stereotaxic coordinates are indicated by the schemata at the bottom. B: A coronal section through the IOC. The isthmo-optic tract (TIO) can be seen leaving the IOC dorsally. The IOC contains a core region densely packed with IO neurons and their dendrites. Some peripheral IO neurons are located relatively far away from the IOC core (arrow). Dendrites originating from
the core region can be found extending away into surrounding neural structures, such as A8 (arrowheads). C: A horizontal section through the IOC, showing the dense core region and few single IO neurons (arrows) lying at considerable distances from it. The radially extending core dendrites (arrowheads) are predominantly directed towards anterior and medial. D: High power photomicrograph within the IOC core in a section counterstained with Nissl. Among the CTB-positive IO neurons (dark DAB-staining), many CTB-negative neurons (arrowheads) can be found, which might be interneurons. E: Medium power photomicrograph of the IOC core region with its numerous multipolar IO neurons. Within the core, the dendritic neuropil has a very high density (see also F), which however rapidly declines at the border of the core region (bottom). Some core neuron dendrites extend beyond the border (arrowheads), indicating that the IOC's radially extending dendrites (cf. B and C) may largely originate from within the core. F: High power photomicrograph of two IOC neurons in the IOC core. Note their multipolar morphology and the dense dendritic neuropil that surrounds them.

Orientation: a. anterior; d. dorsal; l. lateral. Abbreviations: A8 field A8; Cb cerebellum; FRL formatio reticularis lateralis; GCt central gray; ICC central subnucleus of the inferior colliculus (in birds also known as nucleus mesencephalicus lateralis pars dorsalis, MLd); Imc nucleus isthmi, pars magnocellularis; Ipc n. isthmi, pars parvocellularis; LLD dorsal n. of the lateral lemniscus; me5 mesencephalic trigeminal tract; IV trochlear nucleus; nIV trochlear nerve; TeO optic tectum; TIO isthmo-optic tract.
Tecto-IOC terminals after tracer injections into the TeO.

Confocal microscopy images in transverse brain sections (section plane indicated by pictogram in upper right corner in A). *Magenta:* tracing after intraocular injection of Rhodamine B isothiocyanate (RITC). *Green:* Biotinylated dextran amine 3 kDa (BDA) injected into the TeO, revealed by Streptavidin-Alexa488. A: Low-power photomicrograph of a coronal section containing the BDA-injection site in the TeO (green). The retinal projections to the TeO as well as the anterior portion of the IOC are labeled by RITC (magenta). B: High-power photomicrograph of the tectal injection site, which was centered in the intermediate layers (L8–12). C: BDA-labeled axons in the region of the tecto-isthmal tract between IC and Ipc (see inset in A). While some axons bend towards the isthmi nuclei Ipc and Imc (see arrows), others run in direction of the IOC (see arrowheads). D: BDA-labeled tecto-IOC terminals (green), which ramify (see arrow) among the IOC neurons.
(magenta), have a varicose appearance, and some varicosities are found in close proximity to IOC neurons (see arrowheads). E: Enlargement of inset in D. Varicosities can be found in immediate opposition to an IOC neuron soma (bottom arrowheads) as well as at some distance (top arrowheads). Short side-branches can be distinguished in both cases. F: 'Divergent' tecto-IOC terminal which splits into wide ramifications (see arrows). G: Enlargement of inset in F. Many varicosities of a terminal arborization lie in direct proximity to RITC-labeled IOC somata or dendrites (see arrowheads), indicating synaptic contacts.

Orientation: d. dorsal; l. lateral. Abbreviations: IC inferior colliculus (in birds also known as nucleus mesencephalicus lateralis pars dorsalis, MLd); Imc nucleus isthmi, pars magnocellularis; Ipc n. isthmi, pars parvocellularis.

Fig. 5
172x230mm (300 x 300 DPI)
Tecto-IOC projection neurons in the TeO, retrogradely labeled by tracer injections into the IOC region.

Confocal microscopy images of a representative case in which the injection partly covered the IOC. Transverse brain sections (section plane indicated by pictograms in upper right corners). Magenta: intraocularly injected Rhodamine B isothiocyanate (RITC). Green: Cholera Toxin B subunit (CTB) revealed by immunofluorescence (intensified by TSA; see Methods). A: Injection site in the IOC region. B: High-power photomicrograph of position indicated by inset in A. Although the center of the CTB injection only partly covered the IOC, many centrifugal visual neurons in the middle of the IOC were double-labeled with RITC and CTB (see arrowheads), indicating that the injection sufficiently spread into the IOC zones. C–F: Presumptive tecto-IOC neurons in layer (L) 10a of the TeO retrogradely labeled by CTB, found in regularly spaced groups at various tectal positions. C: Group of tecto-IOC neurons in the rostrodorsal TeO. An asterisk...
indicates a labeled neuron in L13, which probably belongs to a descending tectal projection that passes through the area of the injection. D: High-power photomicrograph of one tecto-IOC neurons (see inset in C), showing its multipolar dendritic morphology (see arrowheads) E: Group of tecto-IOC neurons in the caudoventral TeO, apparently with a narrower inter-neuronal spacing. F: High-power photomicrograph of one of them (see inset in E). Some dendrites extend across the inter-neuronal space towards neighboring cells while others extend more radially through the TeO (see arrowheads). The axon which projects upon the IOC, splits off some collateral branches which terminate in L11/12 (see arrows).
Figure 7

Histochemical comparison of centrifugal visual system elements in transverse sections of the retina of the Chilean Tinamou (left) and the domestic chicken (right).

A–B: Anti-Parvalbumin immunofluorescence in the Tinamou (A) and the chicken (B). Labeled cell types are found in the inner nuclear layer (INL) of both species (arrowheads). However, the Tinamou does not appear to possess cells which resemble the conspicuous elongated ‘association amacrine cells’ (AACs) easily identified in the chicken (see arrowheads in B). [Note that the thickness of IPL sublamina I in B appears overrepresented due to the collapsed z-stack image.]

C–D: NADPH-diaphorase histochemistry in the Tinamou (C) and the chicken (D). In the chicken, this again labels the elongated AACs (see arrowhead in D) and also the ‘convergent’ terminals (see arrows in D) from centrifugal ION fibers in the IPL, which synapse on AACs. In the Tinamou, although NADPH-diaphorase-positive cell types are present (see arrowhead in C for an example), none can be identified as AACs by any given criteria. Furthermore, no NADPH-diaphorase-positive ‘convergent’ centrifugal visual terminals are found.

Fig. 7
Centrifugal visual fibers and terminals in the Chilean Tinamou retina, labeled by *in vitro* tracing with Dextran10K-Alexa546.

A–C: Confocal photomicrograph in a horizontal retinal section at the level of the border between INL and IPL. Magenta corresponds to Dextran10K-Alexa546 (A), green to anti-Parvalbumin-immunofluorescence (B), and C shows the merge of both. Anterogradely labeled centrifugal terminals with many varicosities (magenta) can clearly be distinguished in the IPL. They lie in direct proximity to the INL marked by anti-Parvalbumin-labeled amacrine cells (green; see empty arrowheads). The terminals frequently ramify (see filled arrowheads) and form a big field. A retrogradely labeled displaced ganglion cell (dGC) is also present in the INL (note the smooth appearance of its dendrites). D: Reconstruction of the z-axis profile through the same confocal z-stack volume. The bulk of varicosity-rich centrifugal fibers (magenta) form a stratum in...
direct proximity to the INL. The INL can easily be identified by Parvalbumin-positive amacrine cells and a retrogradely labeled displaced ganglion cell whose axon ascends through the IPL. A second Dextran10K-Alexa546-labeled stratum is found where the dendrites of the displaced ganglion cell horizontally ramify.

Fig. 8
86x209mm (300 x 300 DPI)
Centrifugal visual fibers and terminals in the Chilean Tinamou retina, labeled by in vivo tracing from the IOC.

CTB-immunohistochemistry in the retina (TSA-enhanced; see Methods) after in vivo CTB-injections into the IOC (cf. Fig. 5). The small pictogram in the upper right corner of A indicates the positions of the photomicrographs in the whole-mounted retina. A–B: Horizontal sections of retinal whole-mounts. A: Low-power differential interference contrast (DIC) photomicrograph at a central retinal position. A dense mesh of anterogradely labeled ‘divergent’ centrifugal visual terminals is present in the retina at the border between IPL and INL (the cell-rich INL can be identified by the grainy appearance due to DIC). B: Medium-power DIC photomicrograph at a nasal retinal position. An arriving centrifugal visual fiber terminal splits (see arrowhead) and ramifies into a varicosity-rich terminal. C: High-power DIC photomicrograph of a transverse section through the retina. The centrifugal terminals (see arrowheads) mostly terminate around the border (see arrow) of INL and IPL, slightly protruding into the INL.

Fig. 9

172x185mm (300 x 300 DPI)
As shown by the present study, the isthmo-optic complex (IOC) of the Chilean Tinamou forms part of a comparable general circuitry as the isthmo-optic nucleus (ION) of Neognathae: It receives afferents from tecto-IOC neurons in the TeO and sends centrifugal visual efferents to the retina. In contrast to Neognathae with a well-developed ION, the tecto-IOC axons end as divergent terminals in the IOC, as do the retinopetal IOC fibers in the retina. The retinal targets of the IOC continue to be unknown, but the centrifugal projection seems to be asymmetrical as in Neognathae, since it is confined to the equatorial and ventral retina.

Fig. 10
130x124mm (300 x 300 DPI)
By means of *in vivo* and *in vitro* neuronal tracings, the authors show that the centrifugal visual system of palaeognathous birds possesses instead of a well-developed isthmo-optic nucleus a diffuse complex of isthmo-optic neurons, which receive divergent afferents from the optic tectum and send divergent efferent fibers to the retina.